skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Angelopoulos, V"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract High‐intensity long‐duration continuous auroral electrojet (AE) activity (HILDCAA) events are associated with intensification of relativistic electron fluxes in the inner magnetosphere. The physical mechanisms of this intensification are not well established yet. We study observations by the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft in the near earth plasma sheet at radial distances of 10 Earth radii, at the transition region between tail and dipole‐like magnetic configurations, referred to as the nightside transition region (NTR), during a HILDCAA event. The observations revealed recurrent dipolarizations accompanied by plasma flow vortices, impulsive electric field enhancements, and increases in electron fluxes at energies of 100 keV up to 1 MeV. Electron pitch angle (PA) distributions at THEMIS showed field‐aligned flux enhancements at energies of 100 keV. This indicates a Fermi‐type energization. Arguably, electrons gain energy up to MeV via repetitive bouncing through the acceleration region. Energization of ions was insignificant which led to 1. We suggest that the increased ratio leads to a local increase of the Hall conductivity in the conjugate ionosphere, which causes ionospheric current intensification and strong , consistent with observations. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. Abstract We report the first simultaneous observations of total electron content (TEC), radio signal scintillation, and precise point positioning (PPP) variation associated with Strong Thermal Emission Velocity Enhancement (STEVE) emissions during a 26 March 2008 storm‐time substorm. Despite that the mid‐latitude trough TEC decreases during the substorm overall, interestingly, we found an unexpected TEC enhancement (by ∼2 TECU) during STEVE. Enhancement of vertical TEC and phase scintillation was highly localized to STEVE within a thin latitudinal band of 1°. As STEVE shifted equatorward, TEC enhancement was found at and slightly poleward of the optical emission. PPP exhibited enhanced variation across a 3° latitudinal range around STEVE and indicated increased GNSS positioning error. We suggest that TEC enhancement during STEVE creates local TEC structures in the ionosphere that degrade Global Navigation Satellite Systems (GNSS) signals and PPP performance. The TEC enhancement may be created by particle precipitation, Pedersen drift across STEVE, neutral wind, or plasma instability. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. Abstract In planetary radiation belts, the Kennel‐Petschek flux limit is expected to set an upper limit on trapped electron fluxes at 80–600 keV in the presence of efficient electron loss through pitch‐angle diffusion by whistler‐mode chorus waves generated around the magnetic equator by the same 80–600 keV electron population. Comparisons with maximum measured fluxes have been relatively successful, but several key assumptions of the Kennel‐Petschek model have not been experimentally tested. The Kennel‐Petschek model notably assumes an exponential growth of chorus waves as the trapped electron flux increases, and a fixed maximum wave power gain of about 3. Here, we describe a method for inferring the near‐equatorial wave power gain using only measurements of trapped, precipitating, and backscattered electron fluxes at low altitude. Next, we make use of Electron Losses and Fields Investigation (ELFIN) CubeSats measurements of such electron fluxes during two moderate geomagnetic storms with sustained electron injections to infer the corresponding chorus wave power gains as a function of time, energy, and equatorial trapped electron flux. We show that wave power increases exponentially with trapped flux, with a wave power gain roughly proportional to the theoretical linear convective gain, and that the maximum inferred gain near the upper flux limit is roughly 10, with a factor of 2 uncertainty. Therefore, two key theoretical underpinnings of the Kennel‐Petschek model are borne out by the present results, although the strong inferred gains should correspond to higher flux limits than in traditional estimates. 
    more » « less
  4. Abstract This study investigates the evolution of substorm onset beads into poleward expansion, surge, and streamer formation during the substorm expansion phase. Using optical observations, we infer the transition from near‐Earth instability to the formation of a near‐Earth neutral line (NENL). We found that a thin, faint arc appeared immediately poleward of the onset arc shortly after substorm onset but prior to significant poleward expansion. Beads within the longitudinal extent of this poleward arc expanded poleward more rapidly than those outside this region. The western edge of the poleward‐expanding beads formed the surge, and streamers emanated from the poleward‐expanding arc. Poleward expansion occurred stepwise, with each step associated with a re‐intensification of the poleward arc. Analysis of an event with simultaneous observations from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite and THEMIS all‐sky imager showed a near‐simultaneous occurrence of stepwise poleward expansion and dipolarization fronts. The lack of a significant time delay suggests that an X‐line initiates in the near‐Earth plasma sheet at approximately 11.8 REafter onset. This stepwise poleward expansion suggests a corresponding stepwise tailward retreat of the X‐line toward NENL locations observed further tailward in earlier studies. 
    more » « less
  5. Abstract Precipitation of relativistic electrons into the Earth's atmosphere regulates the outer radiation belt fluxes and contributes to magnetosphere‐atmosphere coupling. One of the main drivers of such precipitation is electron scattering by whistler‐mode waves. Such waves typically originate at the equator, where they can resonate with and scatter sub‐relativistic (tens to a few hundred keV) electrons. However, they can occasionally propagate far away from the equator along field lines, reaching middle latitudes, where they can resonate with and scatter relativistic (>500 keV) electrons. Such a propagation is typical for the dayside, but statistically has not been found on the nightside where the waves are quickly damped along their propagation due to Landau damping. Here we explore two events of relativistic electron precipitation from low‐altitude observations on the nightside. Combining measurements of whistler‐mode waves from ground observatories, relativistic electron precipitation from low‐altitude satellites, total electron content maps from GPS receivers, and magnetic field and electron flux from equatorial satellites, we show wave ducting by plasma density gradients is the possible channel that allows the waves to reach middle latitudes and scatter relativistic electrons. We suggest that both whistler‐mode wave generation and ducting can be driven by equatorial mesoscale (with spatial scales of about one Earth radius) transient structures during nightside injections. We also compare these nightside events with observations of ducted waves and relativistic electron precipitation at the dayside, where wave generation and ducting are driven by ultra‐low‐frequency waves. This study demonstrates the potential importance of mesoscale transients in relativistic electron precipitation, but does not however unequivocally establish that ducted whistler‐mode waves are the primary cause of the observed electron precipitation. 
    more » « less
  6. Abstract We use the three‐dimensional (3‐D) global hybrid code ANGIE3D to simulate the interaction of four solar wind tangential discontinuities (TDs) observed by ARTEMIS P1 from 0740 UT to 0800 UT on 28 December 2019 with the bow shock, magnetosheath, and magnetosphere. We demonstrate how the four discontinuities produce foreshock transients, a magnetosheath cavity‐like structure, and a brief magnetopause crossing observed by THEMIS and MMS spacecraft from 0800 UT to 0830 UT. THEMIS D observed entries into foreshock transients exhibiting low density, low magnetic field strength, and high temperature cores bounded by compressional regions with high densities and high magnetic field strengths. The MMS spacecraft observed cavities with strongly depressed magnetic field strengths and highly deflected velocity in the magnetosheath downstream from the foreshock. Dawnside THEMIS A magnetosheath observations indicate a brief magnetosphere entry exhibiting enhanced magnetic field strength, low density, and decreased and deflected velocity (sunward flow). The solar wind inputs into the 3‐D hybrid simulations resemble those seen by ARTEMIS. We simulate the interaction of four oblique TDs with properties similar to those in the observation. We place virtual spacecraft at the locations where observations were made. The hybrid simulations predict similar characteristics of the foreshock transients, a magnetosheath cavity, and a magnetopause crossing with characteristics similar to those observed by the multi‐spacecraft observations. The detailed and successful comparison of the interaction involving multiple TDs will be presented. 
    more » « less
  7. Abstract Magnetic field‐line curvature scattering (FLCS) of energetic particles in the equatorial magnetotail results in isotropization of pitch‐angle distributions, loss‐cone filling, and precipitation above a minimum energy at a given latitude. At a fixed energy, the lowest latitude of isotropization is the isotropy boundary (IB) for that energy. Nominally, the IB (latitude) exhibits a characteristic energy dependence due to the monotonic variation of the equatorial magnetic field intensity with radial distance. Deviations from this nominal IB dispersion can occur if the radial variation (spatial or temporal) is non‐mononotic and/or if other precipitation mechanisms prevail. With its sensitive and detailed measurements of electron spectra up to relativistic energies, ELFIN's recent observations reveal a variety of electron IBe patterns near magnetic midnight which are repeatable enough to warrant classification. This study aims to categorize the various IBe patterns observed by ELFIN's high‐fidelity but short lived dataset (a few months), compare them with simultaneous nearby POES observations, which are made with a limited energy coverage and resolution but last for decades, and discuss their possible interpretation. The general agreement between ELFIN and POES IB observations indicate a relatively large‐scale nature of IBe patterns. Surprisingly, there exists a large number (up to 2/3 of all events) of non‐monotonic‐or steep/multiple‐IB patterns. This suggest an abundance of non‐trivial tail current sheet structures or a mixed contribution of two mechanisms in the vicinity of IBe in these cases. 
    more » « less
  8. Abstract Although Strong Thermal Emission Velocity Enhancement (STEVE) and subauroral ion drifts (SAID) are often considered in the context of geomagnetically disturbed times, we found that STEVE and SAID can occur even during quiet times. Quiet‐time STEVE has the same properties as substorm‐time STEVE, including its purple/mauve color and occurrence near the equatorward boundary of the pre‐midnight auroral oval. Quiet‐time STEVE and SAID emerged during a non‐substorm auroral intensification at or near the poleward boundary of the auroral oval followed by a streamer. Quiet‐time STEVE only lasted a few minutes but can reappear multiple times, and its latitude was much higher than substorm‐time STEVE due to the contracted auroral oval. The THEMIS satellites in the plasma sheet detected dipolarization fronts and fast flows associated with the auroral intensification, indicating that the transient energy release in the magnetotail was the source of quiet‐time STEVE and SAID. Particle injection was weaker and electron temperature was lower than the events without quiet‐time STEVE. The plasmapause extended beyond the geosynchronous orbit, and the ring current and tail current were weak. The interplanetary magnetic field (IMF)Bzwas close to zero, while the IMFBxwas dominant. We suggest that the small energy release in the quiet magnetosphere can significantly impact the flow and field‐aligned current system. 
    more » « less
  9. Abstract We utilized a 4K imaging to examine properties of fine‐scale structures of Strong Thermal Emission Velocity Enhancement (STEVE) near the magnetic zenith. Its high spatial (0.09 km at 200 km altitude) and temporal (24 Hz) resolution provided unprecedented details of fine‐scale structures in the subauroral ionosphere. Although the STEVE emission was seen as a homogeneous purple/mauve arc in the all‐sky images, the high‐speed imaging revealed that STEVE contained substantial multi‐scale structures. The characteristic wavelength and period were 12.4 ± 7.4 km and 1.4 ± 0.8 s, and they drifted westward at 8.9 ± 0.7 km/s. The speed is comparable to the reported magnitude of the intense subauroral ion drifts (SAID), suggesting that the fine‐scale structures are an optical manifestation of theE × Bdrift in the intense SAID. A spectral analysis identified multiple peaks at >10, 4, 2, 1.1, and <1/5 s period (>83, 33, 16, 9, and <1.7 km wavelength). Although most of the fine‐scale structures were stable during the drift across the field of view, some of the structures dynamically evolved within a few tens of km. The fine‐scale structures have a power law spectrum with a slope of −1, indicating that shear flow turbulence cascade structures to smaller scales. The fine‐scale structures pose a challenge to the subauroral ionosphere‐thermosphere interaction about how the ionosphere creates such fine‐scale structures and how the thermosphere reacts much faster than expected from a typical chemical reaction time. 
    more » « less
  10. Abstract An approach for creating continental‐scale, multi‐scale plasma convection maps in the nightside high‐latitude ionosphere using the spherical elementary current systems technique has been developed and evaluated. The capability to reconstruct meso‐scale flow channels improved dramatically, and the velocity errors were reduced by ∼30% compared to the spherical harmonic fitting method. Uncertainties of velocity vectors estimated by varying the model setup was also low. Convection maps for a substorm event revealed multiple flow channels in the polar cap, dominating the convection in the quiet time and early growth phase. The meso‐scale flows extended toward the nightside auroral oval and had continuous flow channels over >20° of latitude, and the flow channels dynamically merged and bifurcated. The substorm onset occurred along one of the flow channels, and the azimuthal extent of the enhanced flows coincided with the initial width of the auroral breakup. During the expansion phase, the meso‐scale flows repetitively crossed the oval poleward boundary, and some of them contributed to subauroral polarization streams enhancements. Increased flows extended duskward, along with the westward traveling surge. Then, flows near midnight weakened and evolved to the Harang flow shear. The meso‐scale flow channels had significant (∼10%–40% on average) contributions to the total plasma transport. The meso‐scale flows were highly variable on ∼10 min time scales and their individual maximum contributions reached upto 73%. These results demonstrate the capability of specifying realistic convection patterns, quantifying the contribution of meso‐scale transport, and evaluating the relationship between meso‐scale flows and localized auroral forms. 
    more » « less